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Multimagnon scattering in the ferromagnetic XXX—model
with inhomogeneities

T-D Albertf, R Flumég and K Ruhlig
Physikalisches Institut der UniveraftBonn, NuRallee 12, D-53115 Bonn, Germany

Received 28 October 1997

Abstract. We determine the transition amplitude for multimagnon scattering induced through
an inhomogeneous distribution of the coupling constant in the ferromagnetic XXX-model. The
two- and three-particle amplitudes are explicitly calculated at small momenta. This suggests a
rather plausible conjecture also for a formula of the genenadrticle amplitude.

1. Introduction

We wish to report in this article the calculation of transition amplitudes of multimagnon
scattering in the ferromagnetic Heisenberg XXX-chain with an inhomogeneous distribution
of the coupling constant.

The Hamiltonian of the model under consideration is given by

H = Hhom + Hinh (1)
J N
Hhom = Z Z [Unat1+l - ]l] (1a)
n=—N
1 N
I_Iinh = Z n:Z_N Zn [a-na'nJrl - ﬂ] (1b)
3
-0 = Zo“ o
a=1
where of denotes the Pauli matrices operating in quantum spabgs i =
—N,...,=1,1, ..., N attached to a one-dimensional lattice witN 3ites, and a periodic

boundary conditiorVy1 = V_y is chosen.

We choose in (&) the ferromagnetic sign of the coupling constént< 0) and assume
the inhomogeneous pieddi,, to be a small perturbation of the homogeneous pgm,
that is, we stipulate for the locally varying couplings

|zi| < |J].

The homogeneous XXX-chain is, as a prototype of an integrable model, one of the most
thoroughly studied one-dimensional spin models.
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A mathematically rigorous analysis of the model has been provided by Babbitt and
Thomas [1]. For a treatment of the XXX-model in the framework of the algebraic Bethe
ansatz (ABA) see [2-5]. It is found that the complete spectrum of the model is formed
by quasiparticles, here called magnons, and bound states of magnons, the so-called string
states. The integrability of the model implies that the interaction between magnons and
strings is of a particularly simple structure. It is characterized by the following features [6]:

e multiparticle scattering factorizes into two-particle amplitudes,

e the string states are absolutely stable bound states.

It follows from these properties that neither genuine multiparticle scattering takes place
(with a non-trivial reshuffling of the particle momenta) nor does a break-up of the bound
states occur.

We will make use of the technique of the ABA [2-5]. A first step in this direction is to
embed the Heisenberg spin mode&)into a family of vertex models. The latter models
are defined through a monodromy matfix,) depending on a spectral parameter

T(A) =Ly ...L_y() )
with the local ‘Lax operatorsL, given by
L,(A) = 32ir1,® 1, + 00 ® 7). @)

The unit operator], and the Pauli matricesy act in an auxiliary two-dimensional space,
while 1, ando, act in the quantum spadé,. The spin chain modella) emerges as the
logarithmic derivative of the vertex model monodromy matrix

i dIntro T (L)) 2N J &
H=—-J- — 2271 _ g2, =2 WO il —
2 4 |, '2'" 3 n;v[” oni1 = 1]

with try denoting the trace with respect to the auxiliary space.

The integrability of the vertex models and therewith also the integrability of the XXX-
model is based on the fact that there is-aumber matrixR = R(A — ), such that the
Yang-Baxter—Faddeev—Zamolodchikov (YBFZ) relation

RO —wLi(A) Q@ Li(n) = Li() ® Li(A)R(A — ) (4)
is satisfied.R = R(A — ) is in the case at hand given by
Sfw, ) 0 0 0
_ 0 g(u, ) 1 0
Re=m=1"o 1 gy 0 ©
0 0 0 flu,
with
=1+ ——  and g, ) = ——.
n—A nw—A

The parameter is set to unity in the following, meaning that the spectral parameter is taken
as a dimensionless entity. The local relation (4) induces the global relation

ROA—mwW)(T M) QT (w) =T @TMA)RMA — ) (6)

which might be considered here as a hallmark of integrability.

The YBFZ relations can be maintained in certain inhomogeneous generalizations of the
above models. One possibility is to choose different representations for different sites of
the lattice. Such cases have been analysed in [7-9]. A conceptually simpler possibility,



Multimagnon scattering in the ferromagnetic XXX—model 1669

noted in [4, 5], consists of attaching local parametgrio the local Lax operator, that is,
one substituted.; (1) by L; (A — z;) and obtains then also a modified monodromy matrix

-N
TO Az =TOszon . an) = [[ L — 2. 7
i=N

One may easily see that the YBFZ relations remain intact,

RO — ) (T (A, {zi) ® T (i, {zi}) = (T (. {zi) @ T(A, {zi})) R(A — ). C)

It should be noted that equation (8) only holds in general if one specifie¥ for{z;})
andT (u, {z;}) the same distribution of local parameté¢tsy, ..., zy}. The physics of the
model on the other hand appears to be invariant under permutations of the parameters. This
is a consequence of the fact that the Bethe ansatz equations, to be mentioned shortly in the
following section, which provide the spectrum of the eigenstates, are insensitive to these
permutations. It is true (modulo some inessential caveats) that the order of the different
representations along the lattice, as mentioned above, is for the same reason irrelevant. We
therefore believe that genuine effects of inhomogeneities can only be realized outside the
class of integrable models.

It is an easy undertaking to arrive from the inhomogeneous vertex model (7) at the
inhomogeneous spin chainyl Let us make for this purpose the specifications

A — € zj — €zj. 9)

The inhomogeneous Heisenberg magigh is recovered as the logarithmic derivative of
the vertex model

H——Ji dln(tr T (er, {ezi )] —JZN:()»— )
= > e 01 (€A, €T =0 2 2 Zn)1

J N
= Z Z()\ - Zn)[a-na-nJrl - ]1] =: AHo — Hi. (10)
n=1

By taking the derivative with respect to a parameterwhich parametrizes different
distributions, one expects to leave the realm of integrability. We will confirm this
expectation by evaluating non-vanishing irreducible multiparticle scattering amplitudes
which are supposed to vanish identically in integrable models.

We will restrict our considerations to the scattering of elementary magnons (the
incorporation of string states is technically definitely much more cumbersome). A
simplifying aspect of the problem can be found in that the inhomogeneous perturbation
respects the same glob&l/ (2) invariance as the homogeneous term. This implies magnon-
number conservation.

The plan of the paper is as follows: in the subsequent section we recall some
ingredients of the ABA, discuss the thermodynamic limit and introduce the so-called
multisite formalism, taken from [10]. In section 3 we evaluate in first-order perturbation
theory multiparticle amplitudes at small momenta. Of crucial importance to achieve this
aim will be the representation of form factors as deduced in [10]. The technical tools to be
applied in our analysis are approximately the same as those used in [11] for perturbative
calculations in antiferromagnetic environments (while of course our calculations are simpler
and more simple-minded). The concluding section is devoted to a qualitative discussion of
other kinematical regions of multiparticle scattering and a summary. In the appendix we
report a perturbative calculation of the spectrum of low-lying states which is conceptually
not related to the theme of the bulk of the paper but on a technical level rather similiar to
the calculations in section 3.
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2. Basics of Bethe ansatz

2.1. Algebraic Bethe ansatz

For the sake of self-consistency we collect here some of the basic aspects of the ABA
Let the monodromy matrix (2) be parametrized as

_(AQ) B®)
oy = (A9 200) -

One deduces from the YBFZ relations (6) the commutators of the operétoys. .., D(A).
Of these 16 relations we only list the following

[B(W), B(w)] =0=[CQ), C(w)]
[B(W), C(w)] = g, W) (D) A() — D()ARL))
A(WB®) = f(u, BA)A) + g(&, ) B(n) A(X)
D(w)B() = f(h, W) BAA)D (1) + g(, M) B(n)D(2)
C)Dw) = f, W)DW)CQA) + g(p, A)DA)C (1)
CAAW) = fu, HAICA) + g(h, ) AR)C ().
Let |0) denote the state of highest weight with respect to the tensor produt/ G2)

representations in the configuration space= [[, V;. This state is annihilated by the
operatorsC (1) and is an eigenstate of the trace of the transfer mat@iy

(12)

T(A) =troT(A) = A(AM) + D))
C(M)|0) =0

1 2N 1 2N
(AA) + D(L)) 0) = [(ix + E) + <i)\ - E) } 0).

The ABA renders a representation of the eigenstates of the transfer matrix in terms of
the operatorsB(A)—being the Hermitian conjugates of the operat6rs.)—which act as
creation operators of quasiparticles (magnons) on the highest-weightGtate

Introducing the notation

]
|©(h, ... 0) = [ [ Bw)IO) (13)
n=1

one arrives—exploiting the commutation relations (12)—at

l ]
(AG) + DO [] B)IO) = AGh: Ar. ... 2 [ BG)IO)

=1 n=1
!
+ ) AiOa, . B [ BOyIO) (14)
k=1 JF#k
with
N Lo —a—i NN Loa—a+i
Ay, ... o) =[ir+= A —— ir— = o= 15
(i das--os h) (' +2> 11 Aj— A +<I 2> ,11 A=A )

1 For a more thorough introduction see [2, 3].
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and
Arha, o h) = g0, 1)

NN Lon — A —i NN Lod — A i

«| (ix +_) f——(ixk——> il Ll T

{(" 2 1_1[ A — Ak 2 1:1[ A — i (16)
J#k J#k

The second bunch of terms on the right-hand side (r.h.s.) comes from the exchange term

in the commutation relations. The spectral parameters have to be specified such that these

terms vanish. This gives rise to the Bethe ansatz equations

iAe + 3 S A= M+

_ : =l_[—_. a7)

I)»k—i =1 )»j—)»k—l
J#k

|® (A1, ...,4;)) is an eigenstate of the transfer matrix if the last equations are satisfied.
The eigenstates can be classified with respect to the eigenvaliie of

2N
S DAy, ... A)) = (7 —l) [ D (A1, ... 20)). (18)

The dual wavefunctions are given by

l
(@Dl = O ][ B'() = (D0
11

J

[
[Jcap. (19)
j=1

J

2.2. Thermodynamical limit

We introduce suitably normalized operators in order to deal with finite norms of states and
finite eigenvalues in the thermodynamical (TD) limit [12]

A =a TM)AM) D) =d Y (W)DK)
BV =a 2(M)d 2 (M)B(O) C) =a2(N)d 2(M)CH)
with a(h) = eV = (ir+ %)ZN the eigenvalue of the operatdi(r) andd(r) = §(1)?Y =

(ir — 52V the eigenvalue oD (1) with respect to0). Thus the operatord (x) and D())
have correspondingly the eigenvalue 1. Exploiting the relations

i(p(A) — p(W)N

(20)

lim g —p)exp————— = —78(L — p) (21)
N—oo 2
with p(}) = %In :Tj denoting the momentum of a magnon and
2
1 .
- = — +imd(x)
x xzxle

which hold in the sense of generalized functions [13]—not pointwise—we obtain in the TD
limit the simplified relations

AQMB(1) = f-(h, WBGAR)
CMD) = f-(r, WDWC )
with f-(, ) =14 —!

A—p—ie”

(22)

1 Our prescription differs from the one given in [12] in an inessential way.
i Terms of the form% have to be evaluated according to the principle-value prescription.



1672 T-D Albert et al

One notes, comparing with equation (12), that the exchange terms have dropped out. The
Bethe ansatz equation can therefore be disregarded in the TD limit (as long as one restricts
the attention to the sector of elementary magnons). Normalized asymptotic scattering states
are generated by acting with creation operatdra) = B(A)A~1(1) on the vacuum (the
highest-weight state) and are annihilated by opera#ig.) = —D~*(1)C(») [6]. The
action of the operatord ! and D! are easily deduced from the relations (22) and from
the fact that the vacuum is an eigenstate with unit eigenvalugof and D (1) and therefore
also of A"t and D L.

An incoming scattering state is given by

Z(M1) ... Z(,)|0) (23)

if the rapidities are ordered in such a way that< --- < A,, and represents an outgoing
state foriy > - -+ > A,.
To relate the incoming to the outgoing states use has to be made of the relation
ZMZ(pw) =S, W Z (W) Z(A) (24)

with S(A, n) = 8\ ) the two-bodyS-matrix. It is easily seen that themagnons-matrix
is given as a product of 2-magndhmatrices.
The wavefunctions (23) are normalized to delta functions with a unit prefactor.

2.3. Multisite formalism

To evaluate scattering amplitudes in the Born approximation, we have to determine form
factors [11] of the type

] ]
o]z (Af)OHZ(Af)|0> (25)

where the operato® is given by©O = Zn_ N 200001 = Y, Oy ay1. SO We are led to
consider matrix elements of the form

] ]
O[22 aHOwma [T 20110
i j

=[[rtas aH ek, ,)0|1"[C(AC>OM+1]_[B(A )[0) (26)

i>j
where the latter identity is a straightforward consequence of the definitioh afid the
commutation relation (22).

The basic strategy for the determination of the r.h.s. of (26) will consist in decomposing

the monodromy matrix into parts as follows:

T =TG@MNT@IMNT AN

T(A) = L,_1(A)...L_y(A)

T(22) = Lyta(M)Ly(2)

T@IA) =Ly ... Ly2(R).
The submonodromy matrices may be parametrized @3 above

(A0 B
T(Jm_(c;m D;m)

(27)
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with (j = 1, 2, 3). The product in (27) is meant to be an ordinary matrix multiplication of
2 x 2 matrices. Thd (j|A) fulfill the global YBFZ commutation relation seperately, acting
on the vector space with highest-weig8};. The highest-weight state of the total space is
given as a tensor product

10) = |0)3® [0)2 ® |0)1. (28)

Using the commutation relations, the operaters D;, which appear if theB(1) are
expressed through operators of the subspaces, can be commuted through to the vacuum.
This yields the so-called multisite formula [5]

i B8
[[B0DI0) = Kg
j=1 (ABIYUABIYWU(ABIT Y =B} jpel kpell Igelll
x B3(A'11)10)3 ® B2(A¢!1)10)2 ® B1(A])[0)1 (29)

with
K = az(hj; )i G, Das( Ny (g a2 f O 48
Xf‘()\']lil’ )\ﬁglll)f()"kBBll’ )\-IIZIII)~
The summation in (29) is with respect to the partition of the set of all Bethe parameters
{x;} in three disjunct subsefs.?’}, {A5/} and {18/"!} with
cardr 'y =1} cardr '’y = 13 carda By =158,
A similar representation can be derived for the dual ve(ﬁ)q)f[j:lC(Af)

£ K

<0|i[<f<kf>= > [TIT IT ke

(ACHYUACHYUACHTY=(AC) jeel kcell Icel Il
x 3(0[C3(A ") ® (012C2 (ML) ® (011C1 (A5 (30)
with
Kc = dy(A a1 O Dds (WS Dar (! ds(g a0
Xf()»ji”, )‘lgcl)f()‘fjlllv )‘Iil)f()‘lgglll’ )‘IC;;”)'

Inserting (29) and (30) into (26) we obtain

] 1
O[[coOOmm]]BOO0O = > I ] @00
=1 k=1

J LILIITLILIIT ISI<K<III
xdx (W) ax W5)d; W8 FOG 20 fF g ADS (G, (7))
xS G, ) (8 D (01C2(A8) O i1 B(E)IO) (31)
with S,{({Af}, AB})) = ;(OITT, CE TT; BAE)|0); being the scalar product in thigh space.

The cardinality of the partition sefa.¢'} and{1?} are equal to each other. Matrix elements
with cardxf} # cardAf} vanish.

Taking into account the normalization of the operatBrand C relative toB andC we
arrive at the following expression

] 1
O [CONOuma[[BGDIO = D> ] (0IC2A5)Onns1B2007)10)
j=1 k=1

LIIIITIIIIII
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< 1 FOS A FOE B8 (05) Tas(AS,) T as(0B) "7

I<J<K<III

xa8(k”,)_7a8(k”) Yas(a )7t

X |:r()\f)i| b |:”()\111 :|2+1 |:”()Lf1 1|N32N1
’”()‘5:) "()‘111 r()‘cl

xS L DS WS 0 (32)

whereas (1) = ¢(1)8(h) andr (i) = 422,

One has the following recursion relation for scalar products [10]:

]
SiAE) (8D —a(xc)Zdu )g(xf,A,,)]"[g(xf,xﬁHg(xf,A,f)sz,l(al(x),c?l(x))
/;ﬁl k+#n

+d<xf>2a<x,f>ga AC>]"[g<xf,xfxC
n=1 Jj#1

]
< [[eGE. x)Si-1(@a(n). da(n)
k#n

with a1(0) = a(Wh(h, AB), a200) = aMh(h, AS) anddi(h) = d(Wh(RS, 1), do(h) =
d(Wh(AE, 0), while h(x, p) = f((k ’;)) 1+ £, We have quoted here on the r.h.s.
the functional dependence of the scalar products on the vacuum eigenvalues which have
changed going from the left-hand side (I.h.s.) to the r.h.s. fagh) to a(r) andd()) to
d () respectively, which makes the solution of the recursion relation difficult in general. The
two-term recursion relation simplifies in the TD limit, if we concentrate on the irreducible
part of the amplitude.

We obtain for the normalized scalar product in the liNit—> oo:

L I ) F1 N N
N'inwl_[l_[[r(kjc)] @G5 Fas )RS ), 11D

Cl BI

_ i V()\fl]) BE )LB[)Hg()L )LCI) l—[ g()LBl )LBI
r(ACI) k1 n1

ny J1#l ki#ny
l

— Z S(Afl )LBI) 1—[ g()‘zcll’ )LCI) 1—[ g()‘fllv )LBI }

ny=1 J1#l ka#ny

I I B Z+a

. A 2t

% lim [r( ’C)} as(A6) " Fas (0B~
N=00 121 Bldn, r(Ay)

xS (a(h(n, AED, d()h(S") (33)

where we have used relation (21). One should note that the second term on the r.h.s.
only contributes—due to the appearance of a delta function—to scattering processes where
at least one magnon goes over unscattered from the incoming to the outgoing state. The
irreducible scattering amplitude, however, refers by definition to that part of the amplitude
from which all energy conserving subprocesses have been subtracted. It means that the
restriction to the irreducible amplitudes effectively implies that only the first term of the
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recursion relation (33) has to be taken into account for the evaluati®i’ bf The ensuing
one-term recursion relation is easily solved with the result

h I By7 P+
lim ]‘[]‘[[’“1)} ad ()~ Fad )7 S W), (W D

N=oo i pp Lr(AY)
I 11 I , ,
=22 2 Jleafah
ni=1 np=1 n, =1 j>i=1
na#ny Ry #NL, Ry -1
Iy
B1 Bl BI1 BI
x ]_[ gOEl A8l I1 g0l A
kl#nl k[l;ﬁl’ll ..... n,1
Iy }"()»B) +1
% [T hGE ann.n AC')}]‘[[ XC)] <" 28 (34)
k>i=1

with the subscript ‘irr’ indicating the restriction to that part of the scalar product that

contributes finally to the irreducible amplitude. The extension of the r.h.s. of equation (34)
by factors 1= & “ ‘“ enables us to represent it as a determinant multiplied by some overall
factor:

11 B
: r(Ar) M _M
N'Tloﬂl_[ [mg)} ) ol 85 (A5). 107 i

Cl BI

l h r(AB1y 341
— Hg(k,CI, )\IC[) l_[g()‘- )\.BI) Hh()‘-CI BI) 1_[ [ } deﬁl M(I)

j>i Jj>i ()\CI)
(35)

n _ sG7Afh
with M( ) = m

A similar relation holds for the part denoted wiili / (here only the second term in the
recursion relation of the scalar product contributes):

ﬂ
I3 I3 V()\,”[ +1 Ny v
Ilm 1_[ l_[ aS()‘III 2 055()»1” 2 813 ({)\111} {)\111})irr

*CI1 BIlI r()‘lll
I3 Is
= l—[g()LjCIII’ ACHIYg((BIIT ) BIITy Hh(kf””v ACHITy
j>i i
N
I3 CIilN3+1
r(y )
S B det. MUID a6
I:r()\‘lBIII)iI us ( )
(ABIII )\(III)
with M{['" = W
Inserting (35) and (36) into (31) we obtain

Lo Lo X A
O T €050 [ ] B0 = ]"[ [rEAB;} [Te0:5. 36186, 47)
j=1 = i i Jj>i

x Yy (e 0|1"[cz<x,,)0nn+1]"[Bz<x )[0)

IIIII1
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l]_ 13
< 1 rOGADRGTADTrOS AP [TROP 25T
ISI<K<III ij i,j
x det R AHMD S, ABYR(1LEY)
x det RS, ) MDD S 0B HYRTEE ) (37)

with R(X);; = r(x;)é;;. While deriving this result we used(x, ) = g(A, w)h(x, n) and
the antisymmetry of thg’s.
[ Pg] stands for the parity of the permutation

Py (AU AU ]} — 0F)
while [P¢] stands for the parity of the permutation
Pe : (R} U AT UG — (26) (38)

with the enumeration in each subset according to the original one.

It is possible, in principle, to write the result in a more compact way, namely as the
determinant of the sum of three matrices [14]. As it is not useful for our purpose we will
not pursue this line of reasoning.

3. Low-energy limit

To start with let us make the simplifications which are due to the special form of the
perturbation. The matrix element

20 [ C20) 0002 [ | B21F)10)2 (39)

appearing in equation (37) is to be evaluated with respect to the two-site highest-weight
state|0),. Therefore, at most two operatoBs and C can show up in (39) (applying two
operatorsB, to |0), one reaches the state of lowest weight of the two-site vector space).
Since we are restricting our attention to scattering events in non-forward directions we may
evaluate instead of (39) the matrix element

2(0| ]f[éz(xﬁ (0401 — 1, 1,11) Héz<xf>|0>z (40)

with 1, the identity inV, (the addition of1, - 1,,, gives only a contribution to the
amplitude in the forward direction). However, (40) vanishes on the state of highest weight
(no operatorsB, andC,) and on the state of lowest weight (two operatBgsand C,). We

are left with the matrix element with one operats and C,, which is straightforwardly
calculated

~ ~ 1 1
01Co(AS) (@O — 1, 1, )B2AE)0) =2———————. 41
2< | 2( 11)( +1 n n+1) 2( 11)| >2 (XS()»?I) ouS(kf, ( )
Taking the normalization and the last result into account we obtain for the transition
amplitude the representation

I I I e Cc 4C B 1B
+ (A9) 87, A7) (A7, A,
YO []2/ )0 ]]zabi0=>"z2 [’] []52 d
d ( |j:l ) wrll (A)10) d z 1ram L LOSAE) FOE AP
/ 1 1
x Y (=ptretel__— [T 165 2HRGE D)

ad(M8) as (15,

IIIII1 )I§J<K<III
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11 Z3
x ]_[h(xf’, ) ]_[ AP AT det R OHMD G AP R(E))
ij ij
x det RS, )MIIDGE 0B HYRTILE ). (42)

The slash on the sum over the partitions is supposed to indicate that only partitions with
exactly one representative present in the subset labelled laye to be taken.

We are now prepared to examine the behaviour of irreducible scattering amplitudes at
low momenta §; ~ p; for small momentum) with two or more magnons involved (the
one-particle amplitude will be quoted below for the sake of completeness). An obvious
method to get a handle on formula (42) consists in a systematic expansion in powers of
momenta, as far as they appear in functianand keeping at the same time the functions
g unexpanded. The leading term is obtained by puttingpnsistently to one at all places
where it appears in (42). This yields fag e {A¢}

1 ] 1 C C B B
toC B ~ g()‘"a)"i)g()"iﬂ)"j)
Zm]lz (O )on,n+1£[12(xk)|o>~232zn]_[f(kc’kic)f(kigﬁkf)

n j n Jj>i

’
x Y (=D detg (0.7, A7) detg(Af, . AT, (43)
L1111
The prefactorsﬂéﬁ ﬁiii’)) may also be put equal to one in leading order by noting that
J>i Fhi
83 ~ 1 4 O(A — p). The sum over the partitionsand 777 in (43) renders a vanishing

S . : .
restt as one infers from the Laplace formula for the determinant of a sum of matrices [5]:
detA + B) = Z (—DPHPl detAp, p. detBp, p, (44)
Pr, Pc

where P, is the partition of rows in subsets of rows afand B, while P is analogous the
partition of columns, and the fact thatis odd

g Al +g0f a0 =0

For the next order of the expansion in powers of momenta we obtain in a straightforward
manner the following result:

N1—-N3

l l ! c 2
O []z'eHuoiona[[zoHI0 ~ 2 [Taof A0 0L A ] [%]
j=1 k=1 riA

j>i i
/
162 Y ha Y (DI — 1y 4 6y 1)
C 111,111

x detg(AS, AB) detg(A5,,, AS,, (45)
with

+1 A, €1
el = 3 150, €111

O:hg € 11.

If A, € (A%} we obtain the same result up to an overall minus sign.
The result can be simplified further, using the following chain of identities:

> (=DPHP Gy — 1) detg(AS, A7) detg (1], A5,
1,111
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0
0x

> (=)l detg (xaf, x27) detg(x " Af X TTAS lama
1,111

0
o det(g(xA%, xA%) + g(x A%, x7IA)) is
X
detg (A€, AB)

9 1 I+l
= —|-——x
ox <x )
x=1

=0 forly +13>1

where we used again the Laplace formula and the antisymmetry gfshe
The remaining term of the first-order Taylor expansion is

N1-N.

] l i C 2
O]z 6 moaa] [zabio =] [ias aonal b [T | 70 |
j=1 k=1 P4

Jj>i i

I
x16-6iz; Y Ay Y (=DIPIHEI(ELIT) detg(Af, A7) detg (1], A5))).-
C 111,111
The sum over the first and the third partition can be combined to a determinant of the sum
of two matrices

Z (—DLPelHPl (LT detg (1S, AP) detg (A5, AG,,) = detig (A€, AP) + g, (A5, A©)).
1,111

The matrix g, (A5, 1) differs from g(A%, A€) in that theath row is multiplied by(—1).
The sum of the two matrices is thus a matrix with only one row of non-vanishing entries.
The determinant is again zero except for+ I3 = 1. We keep as a net result that the
first-order term of the Taylor expansion gives a non-vanishing contribution only for the
one- and two-particle amplitude.

We turn now to the second-order contribution. The computation is tedious, but it
proceeds otherwise along the same lines as the first-order calculation. We thus only quote
the result (omitting the prefactors):

/

! I
O[] 2102000 [[Z2GE0) ~ 1635 > dung > (~DIPeHF]
=1 k=1 B

J 111,111

x[ief iy — 13— Geé,lll)ieg,c(ll il Geé’”l)

+8ap(34"1T 1y + I3)] detg (A7, A7) detg(A7, . AT, (46)
with
se |+l re€B
€’ =
« -1 Ay €C
and

T Ain I 111
0 otherwise.

Whenl; + 13 > 2 this term vanishes as can be shown by generalizing the considerations
used in first-order calculation:

e terms proportional t@/; + I3 + constant vanish by the same argument as used in the
first-order calculation (even fdg + I3 = 2),
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e terms proportional ta/; — I3)? vanish when regarded as the second derivative with
respect tor atx = 1 (this term renders fadh + /3 = 2 the only non-vanishing contribution),

e terms proportional te/-//’ (I, —I3) give a matrix with a prefacto(r% —x)11+l3_1(% +x)
of which the derivative with respect to at x = 1 vanishes,

o terms proportional ta///’e; """ give—after applying the Laplace formula—a matrix
with at most two columns or rows or one column and one row not zero.

We finish this section by quoting the leading terms of the transition amplitudes at small
momenta with the explicit expressions fox 3 in lowest order:

o/=1

N1—N3

1 1
M guig

(47)

ZZn (01ZT(Mo,0411Z(1)|0) = _zzZn [r()»)}

r(w)
e | = 2, cf equation (45)

Y w0127 2T (06) 00001 Z(15) Z(05)10)

ST ) () (i) @

e [ = 3, cf equation (46)
3 3
Y w2 0Hewoa [ ]z0Pi0) ~ _1282:;<ch - ZAB)
n i=1 i=1 C B
3 1
x <XC:AC - XB:,\B) det <m) (49)

with det(ﬁ) denoting the Cauchy determinant of & / matrix

1
det (
Ai — 1

) :(—]_)m &) 1_[,<j ])L)HKJ - i)
[T, — )

and

Ay ) -s=1[0]

the Fourier transform of the distribution of couplings.

Some remarks may be in order.

(1) The one-particle amplitude quoted above is in fact the full Born term (not the leading
piece at small momentum).

(2) The Fourier transformZ of the distribution of the coupling constant appears in
equations (48) and (49), which is a function of the difference of the ingoing and outgoing
momenta. A homogeneous addition to the distributigy} should not and will not have
an effect on the formulae since such an addition will render a contribution proportional to
8(X_c2¢ =>4 1) which is annihilated by the powers of momenta appearing in (48) and
(49).

(3) To apply the above expressions to physical processes of magnon scattering one has
to restrict the respective expressions to the energy shell, giveﬁpgfz = Afz.
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4. Conclusion

The main result of this paper are the formulae (48) and (49) for two- and three-magnon
scattering at small momenta. An obvious generalizationd-particle scattering may be
conjectured:

! i
O[]z Heioa ] zaHio) ~ —16.212(ZAC _ sz)
c B

i=1 i=1
x(XC:,\C —XB:AB)ldet <ﬁ> (50)

We are not able to prove this conjecture so far.

It may be noted that the nominator of the determingit ; (A% — A%) [T._, (A — A5)
appearing on the r.h.s. of equation (50) reflects the Pauli exclusion principle realized by
the Bethe wave states [15]. While the overall zero degree of homogeneity with respect
to uniform scaling of all momenta may be plausible, we are not aware c priori
explanation for the appearance of ftte power of the difference of momenta of the incoming
and outgoing particles. We speculate that this reflects genuinely the integrability of the
homogeneous XXX-model.

There are other kinematical regions besides the one of low momenta for which simple
and reliable estimates can be made. If all momenta and all differences of momenta become
large, then-particle transition amplitude decreases wjith”*®—p denoting a common
scale of all momenta—as can be inferred from an inspection of equation (37). An interesting
kinematical region—also accessible to a rather detailed analytical description—is given by
the setting

C C C T
I —afl<1 A —afl< 1 I —=afi>1 Vi, j
IWE~ A~ p > 1.
This situation is realized if a bunch of particles travelling approximately with the same

velocity is collectively scattered backwards at the inhomogeneity.
The piece of (37) supplying the dependence in this case is given by

[1 13
z<0IC2(kf1)(9n,n+1Bz()»f1)|0>2 1_[ h()»,»CI, AP 1_[ T, AT
ij ij
x detM D (1S, 18)) det M D (S, A8 1))
for which one easily calculates the scaling behaviput'+.
To arrive at this conclusion it is essential to view the determinants in the above formula
as derivatives of Cauchy determinants:

1 ] 9 1
detM; ~det ———— = — ... — de} ——.
! 1i(,\f —A52 T aaf oAl ' (A& — 18

A completely open problem within our approach is the treatment of string states. The
determination of break-up amplitudes for string states seems to us a particularly challenging
problem.
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Appendix

In this appendix we use the result (31) to determine the shift of energy eigenvalues caused
by I_Iinh = Z]iz,{lvzl Zn[o'no'nJrl - ]]-] [161 17]
The lowest excitation is generated by flipping one sf@ir= 1). The solution of the
Bethe ansatz equation is in this case
1 Po 2k

A= =cot— = — k=1,...,N. 51
5 GOt po=— (51)

Taking into account parity degeneracy the first-order correction to the ermgfig) =

1 1 H
3T is found to be

w_ VO V., =)
(O|C (M) B(M)|0) (QICc()B()|0)

with V1, o) = —3 Y14 2 (01C (1) (0011 — 1)B(112)|0) which leads to

1 N
EVG) = EO) <N sz> :EJ 3 Z]’v—zzf‘ exp(—2ipo(a)(j — b)) | - (52)
Jk=1

j=1

This shows that the energy correction depends in first-order both on the mean-
value of the couplingg = %Zjvzlzj and on the Fourier transform of the distribution

T2 7 exp(E2ipoj) (herepo(r) = §1n :i+,2

The second-order corrections can be obtained from the secular equation

Vm V)
E(Z) ()\‘) — nmv¥mn
Z 0 0
" i EY — EY

where the matrix elements are taken with respect to the corrected wavefunction in the zeroth
approximation

Vum = (20 () £ X D (—1)| Hy | D (1))
=PV, ) £ SV (=h, 1)

with V(x, 1) defined as in (4) and© being the following expressions

L0 _ | VO h)
! 2V, =)

(0) V( A, A)
2|V( A

Inserting the explicit formulae yields

Jj—k . j—k . i\ /K
1 w—l A+ ir—3
E(Z))\. = - 2 - + 2
w ) 42 2N22’k[ i ir—5 ir+ 35

,u,;é:l:A +12
j+k
() ()

P

NI=

NI—=

. i/~
in+ 3

+| 212
|M—§

NI
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K. is a quotient of Fourier transforms
ZN ‘ iAt] 2j
i=1% \GFy
Yo (Y

j=1%i i)

The sum ovem can be transformed faV — oo into a principle-value integral

1 ZiZk +o00 1 i (j—k—=1) i (k—j—1)
E@) = — ! / = — =
w3 SnZNUp e 2|\F T3 H=3

j.k
i (j—k=1) i (k—j—1)
x2cosp(M)(j — k)] + (u— 5) (M+ §>

[K, e PG+ K_ei[?()»)(jJrk)]} die.

This principle-value integral can be evaluated by deforming the integration contour into the
complex plane, closing it at infinity, which is possible as the integrand vanishes® a
infinity. Thus only the pole structure of the integral matters.

There are poles at = +u for all values ofj, k, at u = IE for j > k in the first term
and for j < k in the second term and at = —iz with j, k dependence of the first and
second term interchanged. It is convenient to split the sum gveinto three parts:

=2t

j=k Jj>k Jj<k

For each sum the contour can be deformed in such a way that the integrand only contains
poles of first order, for which the residues are easily calculated.
The result of the integration is

122 2
E@G) = —E°<x>{§ Y 22E £ =] - = 3 L sin[pGa G — 0]
j ik

2o PO — k)] £ fGh, j > k)]} (53)

with f(x, j, k) = [K+e—i17(?»)(j+k) + K_ép(k)(H-k)]_

For the second-lowest excitation (two magnons) the computation is more involved, but
still elementary, so we only give the result for the first-order correction to the energy of the
two-magnon state:

N N
ED (u1, p2) = E9 (1, Mz){ > Zﬁj + 2[ >N 2 ©XPl-2ipo(un)(j b
= jk=1

eXP[—Z'Po(Mz) (=D £2EQ(u)E® (o)

[ Zka L expl-2ipo(u1)(j — K]

f

Vo :
<> L expl-2ipo(i2) (j — k)]}
=
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Furthermore there exist complex solutions of the Bethe ansatz equations. They describe
bound states [18] with momentum

o= (1)
X — 1

0
Eging(x) = 71

wherex denotes the centre of the bound state.
The first-order correction for the two magnon bound state is

and energy

1 N N 7z . .
ESiing®) = EQing®) (ﬁ sz) £ EQ, [ Y ]fv—z" exp(—2ip(x)(j — k)) (54)
j=1 Jik=1

with EO), = %Xzi% the energy of the centre of the bound state.
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